Low Impact Development Practices Michael Dietz, Ph.D. CT Nonpoint Education for Municipal Officials (NEMO) Center for Land Use Education and Research May 8, 2013 Town of Bolton Planning and Zoning Commission #### **Center for Land Use Education and Research** #### **CLEAR's Mission:** To provide information, education and assistance to land use decision makers in support of balancing growth and natural resource protection. - Connecticut NEMO - National NEMO Network - Geospatial Training Program - Land Use Academy - Extension Forestry Program - Lab for Earth Resource Information Systems the Environment Connecticut Sea Grant **University of Connecticut** College of Agriculture, Dept. of Extension College of Agriculture, Dept. of Natural Resources & http://clear.uconn.edu # Low Impact Development (LID) Site Planning and Design Concepts - ☐ The Goal: To preserve pre-development - hydrology - □ Runoff volume and rate - □ Groundwater recharge - ☐ Stream baseflow - □ Runoff water quality ## Low Impact Development Practices • Permeable paving systems Pervious concrete at CT State Capitol ## Pre-cast pervious concrete "Stormcrete" from Porous Technologies (Yarmouth, ME) #### Residential Rain Gardens Maryland Waterford, CT # Ponding area Ponding is OK, but should be gone within 3-4 hours ### Siting a rain garden ### Rain garden placement - Must be at least 10 feet from foundation with basement or where top of foundation is below ponding level (25 feet away recommended for bioretention) - Avoid placing within 15ft of septic system or 25 ft to private drinking well - Site to most effectively catch storm runoff - Consider overflow # Important site considerations for rain gardens - Avoid areas with: - Shallow (<3 feet) depth to bedrock - Seasonal high water table (<2ft from bottom) - Chronically wet soils (a rain garden is not a wetland!) - Be aware of the infiltration capacity of native soils - Watch for steep slopes #### Overflow - For rain gardens, typically adjacent turf or wooded area - Avoid concentrating flow-spread it out to reduce erosion potential #### Soils #### Percolation test: #### Steps: - 1. Dig a hole 12 inches deep by 6 inches in diameter. - 2. Fill hole with water and let stand until all the water has drained into the ground. - 3. Refill the empty hole with water again. Measure the depth of water with a ruler. - 4. Check the depth of water with a ruler every hour for 4 hours. - 5. Calculate how many inches of water drained per hour. 1 to 2 inches of water draining per hour is ideal #### Soils - Send sample to county Extension Office for sand/silt/clay and/or nutrient analysis - Sandy or loamy soils best, but others can be used with amendments # Important factors with rain gardens • SOIL COMPACTION before, during construction #### Soil Amendments - For compaction, loosen up and remove some of the compacted soil, and replace with bioretention media - For new residential construction, assume this is the case! - For clay soils: - Make garden larger, and amend with compost - Excavate and install bioretention media & underdrain ## **Bioretention specifics** #### Bioretention soil mix PGC Bioretention Manual defines bioretention soil mix as follows: Coarse sand: 50-60%Leaf compost: 20-30% - Topsoil (<5% clay): 20-30% #### Custom bioretention blends available - Read Custom Soils - www.readcustomsoils.com - 4:3:2 blend of Sand:topsoil:compost - Classified as loamy sand - 87% sand, 8 % silt, 5% clay - 2.5% organic matter - Agresource - http://www.agresourceinc.com/ - Rich Simcich 800-313-3320 - Grillo Organic in Milford, CT - http://grilloservices.com/ - 50% sharp sand, 25% compost, 25% topsoil (<5% clay) - 203-877-5070 #### **Underdrains** - Purpose is to reduce potential for extensive surface ponding - Highly recommended for commercial/urban bioretention - Slotted (ADS) or perforated (PVC) pipe at bottom or just above bottom of bioretention, surrounded by crushed stone #### Slide 34 N2 bioret Nemostudent, 3/17/2011 ### **Underdrains** #### Filter fabric... - Only if specified, placed above underdrain - Usually not needed for residential sites - Don't line bioretention, don't wrap underdrain pipe - Non-woven geotextile ## Sizing Your Rain Garden ## How Big Should it Be? - Simple method - Sized to store 1 inch of runoff from 100% impervious watersheds - Runoff coefficient method - From PGC Bioretention manual, CT DEP Stormwater Quality Manual (2005) ## Simple Sizing • Calculate area of roof feeding to garden ## Simple Sizing, continued - 50 feet x 30 feet = 1500 square feet - 1500 feet / 2 = 750 square feet - This is because only half the roof contributes to the garden - 750 square feet / 6 = 125 square feet - This just sizes the garden to hold 1 inch of water from the roof in a 6 inch deep rain garden ## Sizing, continued - 125 square feet - Garden can be shaped in a variety of ways ### For Mixed-Use Drainage Areas - Based on "Water Quality Volume" - 1 inch - Use equation $WQ_v = [(P)(R_v)(A) / 12]$ - P= 1.0 inch - $R_v = 0.05 + 0.009(I)$ - I=Percent impervious (1-100) - A=Total watershed area (square feet) From Bioretention Manual (Prince George's County, 2009) #### Rain garden with mixed-use drainage area #### Measurements - Large rectangle - $-108' \times 68' = 7,344 \text{ ft}^2$ - Small rectangle - $-41' \times 80' = 3,280 \text{ ft}^2$ - Total area = **10,624 ft**² - Sidewalks - -10'x175' & 8'x75' = 2,350 ft ### Calculate WQv - $WQ_{v} = [(P)(R_{v})(A) / 12]$ - P= 1.0 inch - \bullet R_v= 0.05 + 0.009(22) = 0.248 - A=10,624 - = [(1)(0.248)(10,624)/12]= **220** ft³ For 6" deep garden, double it = 440 ft² Installation sequence #### Installation - Call hotline to locate underground utilities (at least 3 days in advance) 1 – 800 – DIG - SAFE - Mark area to be dug - Plan for labor - Smaller gardens can be dug by hand or equipment can be rented for larger gardens ## Mark out & plan for flow ## Remove turf • Can be saved for berm ## Remove soil Foot traffic only – this is really important Plan where to put it! #### **Plants** - Native or well-adapted nonnatives - Plants that like wet feet, but can tolerate extended dry periods - NOT wetland plants! - Can use different plantings for different parts of rain garden ### Install plants ### Mulch - Best is aged, shredded hardwood bark mulch - About 2-3 inches in depth - NOT pine bark nuggets! - They float #### Construct flow entrance ## Filled with bioretention mix 50% coarse sand 25% leaf compost 25% topsoil ### A well-installed rain garden... - Has open flow paths, overflow and an adequately sized storage area - Has proper materials installed - Has NON-COMPACTED soils! - Is only used after the surrounding site is stabilized - Has proper plantings/ground cover - Has a provision for short term care (watering) #### Maintenance - Short term - Water plants until they get established - Remove any invasives - Long term - Trim plants as desired - Remove invasives - Remulch as needed - **Maintain flow paths and storage ** #### Resources - NEMO/CFE Rain Garden page http://nemo.uconn.edu/raingardens - Webinars http://clear.uconn.edu/webinars/CLEARseries - LID Inventory http://nemonet.uconn.edu