Low Impact Development Practices

Michael Dietz, Ph.D.

CT Nonpoint Education for Municipal Officials (NEMO) Center for Land Use Education and Research

May 8, 2013
Town of Bolton Planning and Zoning Commission

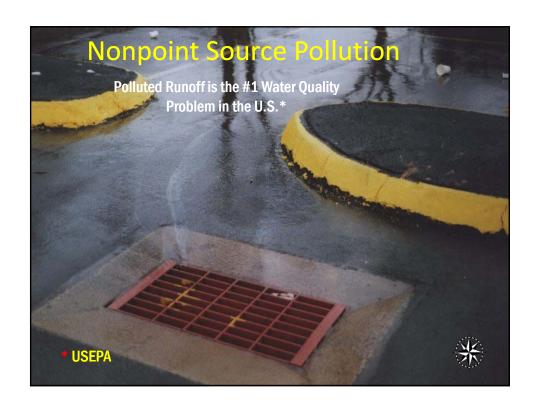
Center for Land Use Education and Research

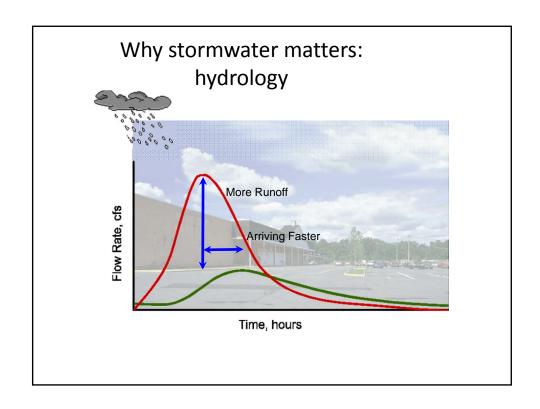
CLEAR's Mission:

To provide information, education and assistance to land use decision makers in support of balancing growth and natural resource protection.

- Connecticut NEMO
- National NEMO Network
- Geospatial Training Program
- Land Use Academy
- Extension Forestry Program
- Lab for Earth Resource Information Systems

the Environment
Connecticut Sea Grant


University of Connecticut


College of Agriculture, Dept. of Extension

College of Agriculture, Dept. of Natural Resources &

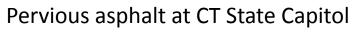
http://clear.uconn.edu

Low Impact Development (LID) Site Planning and Design Concepts

- ☐ The Goal: To preserve pre-development
 - hydrology
 - □ Runoff volume and rate
 - □ Groundwater recharge
 - ☐ Stream baseflow
 - □ Runoff water quality

Low Impact Development Practices

• Permeable paving systems



Pervious concrete at CT State Capitol

Pre-cast pervious concrete

 "Stormcrete" from Porous Technologies (Yarmouth, ME)

Residential Rain Gardens

Maryland

Waterford, CT

Ponding area

Ponding is OK, but should be gone within 3-4 hours

Siting a rain garden

Rain garden placement

- Must be at least 10 feet from foundation with basement or where top of foundation is below ponding level (25 feet away recommended for bioretention)
- Avoid placing within 15ft of septic system or 25 ft to private drinking well
- Site to most effectively catch storm runoff
- Consider overflow

Important site considerations for rain gardens

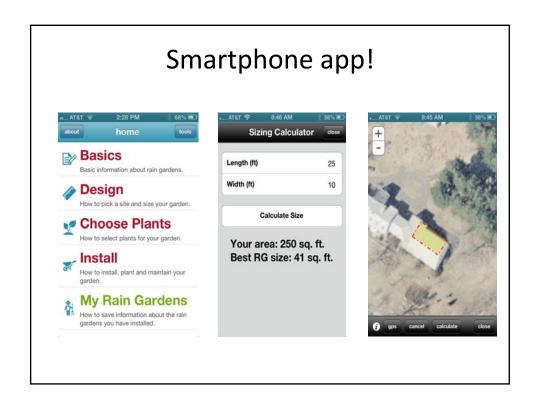
- Avoid areas with:
 - Shallow (<3 feet) depth to bedrock
 - Seasonal high water table (<2ft from bottom)
 - Chronically wet soils (a rain garden is not a wetland!)
- Be aware of the infiltration capacity of native soils
- Watch for steep slopes

Overflow

- For rain gardens, typically adjacent turf or wooded area
 - Avoid concentrating flow-spread it out to reduce erosion potential

Soils

Percolation test:


Steps:

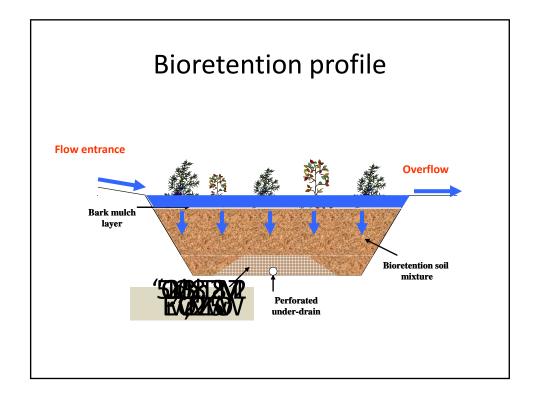
- 1. Dig a hole 12 inches deep by 6 inches in diameter.
- 2. Fill hole with water and let stand until all the water has drained into the ground.
- 3. Refill the empty hole with water again. Measure the depth of water with a ruler.
- 4. Check the depth of water with a ruler every hour for 4 hours.
- 5. Calculate how many inches of water drained per hour.

1 to 2 inches of water draining per hour is ideal

Soils

- Send sample to county Extension Office for sand/silt/clay and/or nutrient analysis
- Sandy or loamy soils best, but others can be used with amendments

Important factors with rain gardens


• SOIL COMPACTION before, during construction

Soil Amendments

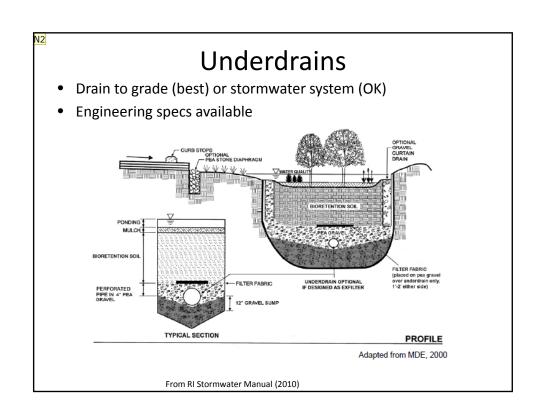
- For compaction, loosen up and remove some of the compacted soil, and replace with bioretention media
 - For new residential construction, assume this is the case!
- For clay soils:
 - Make garden larger, and amend with compost
 - Excavate and install bioretention media & underdrain

Bioretention specifics

Bioretention soil mix

 PGC Bioretention Manual defines bioretention soil mix as follows:

Coarse sand: 50-60%Leaf compost: 20-30%


- Topsoil (<5% clay): 20-30%

Custom bioretention blends available

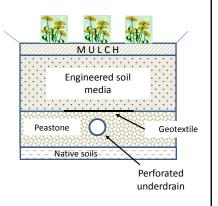
- Read Custom Soils
 - www.readcustomsoils.com
 - 4:3:2 blend of Sand:topsoil:compost
 - Classified as loamy sand
 - 87% sand, 8 % silt, 5% clay
 - 2.5% organic matter
- Agresource
 - http://www.agresourceinc.com/
 - Rich Simcich 800-313-3320
- Grillo Organic in Milford, CT
 - http://grilloservices.com/
 - 50% sharp sand, 25% compost, 25% topsoil (<5% clay)
 - 203-877-5070

Underdrains

- Purpose is to reduce potential for extensive surface ponding
- Highly recommended for commercial/urban bioretention
- Slotted (ADS) or perforated (PVC) pipe at bottom or just above bottom of bioretention, surrounded by crushed stone

Slide 34

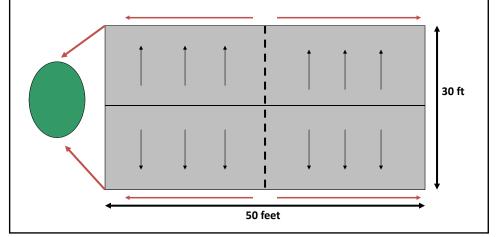
N2 bioret


Nemostudent, 3/17/2011

Underdrains

Filter fabric...

- Only if specified, placed above underdrain
 - Usually not needed for residential sites
 - Don't line bioretention, don't wrap underdrain pipe
 - Non-woven geotextile

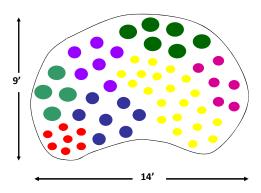

Sizing Your Rain Garden

How Big Should it Be?

- Simple method
 - Sized to store 1 inch of runoff from 100% impervious watersheds
- Runoff coefficient method
 - From PGC Bioretention manual, CT DEP Stormwater Quality Manual (2005)

Simple Sizing

• Calculate area of roof feeding to garden



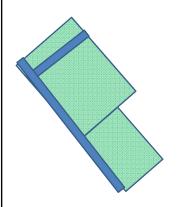
Simple Sizing, continued

- 50 feet x 30 feet = 1500 square feet
- 1500 feet / 2 = 750 square feet
 - This is because only half the roof contributes to the garden
- 750 square feet / 6 = 125 square feet
 - This just sizes the garden to hold 1 inch of water from the roof in a 6 inch deep rain garden

Sizing, continued

- 125 square feet
 - Garden can be shaped in a variety of ways

For Mixed-Use Drainage Areas


- Based on "Water Quality Volume"
 - 1 inch
- Use equation $WQ_v = [(P)(R_v)(A) / 12]$
 - P= 1.0 inch
 - $R_v = 0.05 + 0.009(I)$
 - I=Percent impervious (1-100)
 - A=Total watershed area (square feet)

From Bioretention Manual (Prince George's County, 2009)

Rain garden with mixed-use drainage area

Measurements

- Large rectangle
 - $-108' \times 68' = 7,344 \text{ ft}^2$
- Small rectangle
 - $-41' \times 80' = 3,280 \text{ ft}^2$
- Total area = **10,624 ft**²
- Sidewalks
 - -10'x175' & 8'x75' = 2,350 ft

Calculate WQv

- $WQ_{v} = [(P)(R_{v})(A) / 12]$
 - P= 1.0 inch
 - \bullet R_v= 0.05 + 0.009(22) = 0.248
 - A=10,624
 - = [(1)(0.248)(10,624)/12]= **220** ft³

For 6" deep garden, double it = 440 ft²

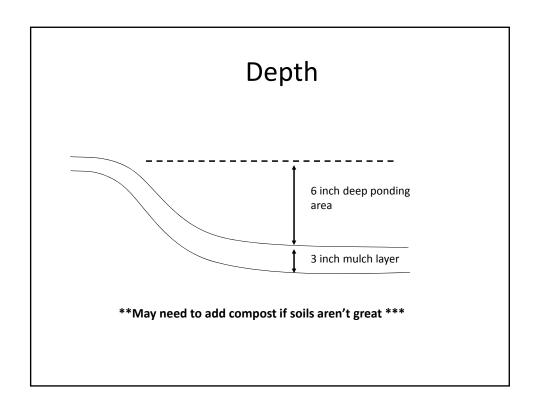
Installation sequence

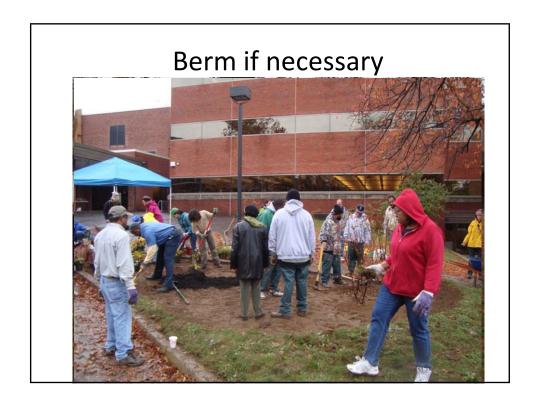
Installation

- Call hotline to locate underground utilities (at least 3 days in advance) 1 – 800 – DIG - SAFE
- Mark area to be dug
- Plan for labor
 - Smaller gardens can be dug by hand or equipment can be rented for larger gardens

Mark out & plan for flow

Remove turf




• Can be saved for berm

Remove soil

Foot traffic only – this is really important
 Plan where to put it!

Plants

- Native or well-adapted nonnatives
- Plants that like wet feet, but can tolerate extended dry periods
- NOT wetland plants!
- Can use different plantings for different parts of rain garden

Install plants

Mulch

- Best is aged, shredded hardwood bark mulch
 - About 2-3 inches in depth
- NOT pine bark nuggets!
 - They float

Construct flow entrance

Filled with bioretention mix

50% coarse sand

25% leaf compost

25% topsoil

A well-installed rain garden...

- Has open flow paths, overflow and an adequately sized storage area
- Has proper materials installed
- Has NON-COMPACTED soils!
- Is only used after the surrounding site is stabilized
- Has proper plantings/ground cover
- Has a provision for short term care (watering)

Maintenance

- Short term
 - Water plants until they get established
 - Remove any invasives
- Long term
 - Trim plants as desired
 - Remove invasives
 - Remulch as needed
 - **Maintain flow paths and storage **

Resources

- NEMO/CFE Rain Garden page http://nemo.uconn.edu/raingardens
- Webinars

 http://clear.uconn.edu/webinars/CLEARseries
- LID Inventory http://nemonet.uconn.edu